C.U.SHAH UNIVERSITY Summer Examination-2022

Subject Name: Differential Equations

Subject Code: 5SC0	IDIE1	Branch: M.Sc. (Mathematics)		
Semester:1	Date: 22/04/2022	Time: 11:00 To 02:00	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	8	• Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$.	(02)
	ł	• State Legendre's differential equation	(01)
	(• Check whether $\{1, e^x, e^{-x}\}$ linearly independent or dependent.	(02)
	Ċ	• Determine the nature of the point $x = 0$ for the equation,	(02)
		$xy'' + y\sin x = 0.$	
Q-2		Attempt all questions	(14)
	a.	Solve the ordinary differential equation $y'' - 3y' + 2y = e^x$ by the method of Variation of parameters.	(05)
	b.	Determine the series solution of the differential equation $y'' - y = 0$ at $x = 0$.	(05)
	c.	Solve: $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = \cos 2x.$	(04)
		OR	
Q-2		Attempt all questions	(14)
	a.	Find the series solution of $(x - 1)y'' + xy' + y = 0$ with $y(0) = 2$, y'(0) = -1.	(07)
	b.	By power series method solve the initial value problem ry'' + y' + 2y = 0 with $y(1) = 2$ $y'(1) = 4$	(07)
0.3		Attempt all questions	(14)
γ -ν	a.	State and prove Orthogonality of Legendre's polynomials.	(07)

	b.	State and Prove Rodrigue's Formula.	(07)
		OR	
Q-3		Attempt all questions	(14)
	a.	Prove that $(1 - 2xt + t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} t^n P_n(x)$, where $ x \le 1, t < 1$	(06)
	b.	In usual notation prove that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ if $m = n$.	(06)
	c.	Show that $P_n(1) = 1$.	(02)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	Find $r(\frac{1}{2}) r(\frac{5}{2})$.	(02)
	b.	$J_{\frac{1}{2}}(x) = $	(01)
	c.	Find complete integral of $p + q + pq = 0$.	(02)
	d.	State Lagrange's equation.	(01)
	e.	Write formula of $\Gamma(n + 1)$.	(01)
Q-5		Attempt all questions	(14)
-	a.	State and prove Fourier Bessel's expansion of $f(x)$.	(06)
	b.	Show that $J_n(ax)$ is solution of $y'' + \frac{1}{x}y' + (a^2 - \frac{p^2}{x^2})y = 0$	(05)
	C.	Express $x^2 - 3x + 1$ in terms of Legendre polynomials.	(03)
		OR	
Q-5	a.	Attempt all questions Form partial differential equation by eliminate arbitrary function from following (a) $z = e^y f(x + y)$	(14) (05)
	b.	$(b)z = f(x^2 - y^2).$ Find the third approximation of the solution of the equation $\frac{dy}{dx} = 2 - \frac{y^2}{dx}$	(05)
	c.	$\left(\frac{1}{x}\right)$, $y(1) = 0$ by Pleard's method Prove that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.	(04)
Q-6		Attempt all questions	(14)
	a.	Solve the following partial differential equations. (a) $y^2p - xyq = x(z - 2y)$. (b) $z(xn - yq) = y^2 - x^2$	(06)
	b.	Find complete integral of $z + 2u_z - (u_x + u_y)^2 = 0$ by Jacobi's	(06)

method. Prove that $J_n(x) = (-1)^n J_{-n}(x)$. (02) c.

Page **2** of **3**

OR

Q-6 **Attempt all Questions**

- (14) If \overline{X} curl $\overline{X} = 0$, where $\overline{X} = (P, Q, R)$ and μ is an arbitrary differential (06) a. function of x, y and z then prove that $\mu \overline{X} \cdot curl(\mu \overline{X}) = 0$.
- Verify that the Pfaffian differential equation yz dx + xzdy + xy dz = 0b. (05) is integrable and find its solution.

Check whether the partial differential equations $p = 1 + e^{\frac{x}{y}}$ and (03) c. $q = e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right)$ are compatible or not.

